Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.809
Filtrar
1.
Food Chem Toxicol ; 187: 114625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582342

RESUMO

Per- and polyfluoroalkyl substances (PFAS) form a vast family comprising more than 4700 synthetic compounds. Their molecules contain a terminal functional group and a hydrophobic carbon tail (alkyl group) at which the hydrogen atoms are totally (in the case of perfluorinated compounds) or partially (in the case of polyfluorinated compounds) replaced by fluorine atoms. Due to the very specific properties of their structure, they have been used in a vast range of applications over the last 70 years. These substances are considered to be of concern for the environment. Their effects on human health are still poorly understood because studies are still too rare, but the cutaneous route could be a significant pathway of penetration. In this context, we made a qualitative study to assess the presence of PFAS in various cosmetics such as hygiene products, skin care products, make-up and perfumes. Among the 765 products studied, we found 11 different PFAS. Polytetrafluoroethylene (PTFE) and perfluorodecalin, present in 25.9% and 22.2% of products containing it, respectively, were the most frequent. Although the presence of this type of ingredient seems to be limited in Europe, make-up appears to be the type of product most likely to contain PFAS.


Assuntos
Cosméticos , Fluorocarbonos , Perfumes , Humanos , Cosméticos/química , Fluorocarbonos/análise , Europa (Continente)
2.
Toxicol Ind Health ; 40(6): 306-311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575135

RESUMO

Rinse-off cosmetic products, primarily shampoos, are frequently implicated in the onset of allergic contact dermatitis (ACD) caused by alkyl glucosides (AGs). AGs are increasingly popular surfactants and known contact allergens. Glucoside-induced ACD was most frequently observed with shampoos and skin-cleansing products in both consumer and occupational settings. Thereby, studies have shown that atopic individuals are the most susceptible to ACD. Also, several investigations have indicated that individuals with sensitive skin might be more prone to skin allergies. This is why the presence of AGs was investigated in shampoos and body cleansers marketed as hypoallergenic or for sensitive skin. For this purpose, the website of Amazon.com was surveyed. Four groups of cosmetics were obtained by using the following keywords: "hypoallergenic shampoo for adults," "sensitive skin shampoo for adults," "hypoallergenic body cleanser for adults," and "sensitive skin body cleanser for adults." The first 30 best-selling cosmetics in each group were investigated for the presence of AGs, by analyzing the product information pages. The results showed that as much as 56.7% of hypoallergenic shampoos contained AGs, as ingredients, whereas the percentage was somewhat lower for other product categories. Even though decyl and lauryl glucoside were nearly ubiquitously used AGs in cosmetics over the past decade, the most commonly present AG in our analysis was coco-glucoside. The results of this study indicated a necessity to include coco-glucoside in the baseline series of patch testing allergens. Industry, regulators, and healthcare providers should be made aware of the frequent presence of AGs in rinse-off cosmetic products marketed as hypoallergenic or for sensitive skin to ensure the safety and well-being of consumers and patients.


Assuntos
Cosméticos , Dermatite Alérgica de Contato , Glucosídeos , Glucosídeos/análise , Humanos , Dermatite Alérgica de Contato/etiologia , Cosméticos/efeitos adversos , Cosméticos/química , Alérgenos/análise , Preparações para Cabelo/efeitos adversos , Preparações para Cabelo/química , Pele/efeitos dos fármacos
3.
Eur J Dermatol ; 34(1): 40-50, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557457

RESUMO

There is growing concern about the presence of endocrine disrupting chemicals (EDCs) in cosmetics. We aimed to identify the main cosmetic ingredients with suspected endocrine-disrupting properties, and analyse their presence in current marketed products. Particular attention was given to products intended for susceptible (due to physiological status) and vulnerable (due to specific pathologies) groups with a view to informing cosmetologists and related health professionals of the scientific basis and current status of any concerns. Suspected EDCs used as cosmetic ingredients, included in lists published by regulatory agencies, were documented and investigated by weight of evidence analysis based on endocrine-related toxicity studies. In total, 49 suspected EDCs were identified from a sample of over a thousand cosmetic products marketed in the European Union. Suspected EDCs were found in approximately one third of products, with a similar frequency in products intended for susceptible and vulnerable groups. Avobenzone (CAS number:70356-09-1), octisalate (CAS number: 118-60-5), and butylated hydroxytoluene (CAS number: 128-37-0) were mostly commonly identified. The presence of EDCs was particularly high for sun care cosmetic products. Our results highlight potentially significant exposure through cosmetics to substances currently studied by regulatory institutions as suspected endocrine disrupters. EDCs are not yet universally regulated, and informing health professionals and educating the population as a precaution are options to reduce individual exposure levels, especially in vulnerable and susceptible groups. Special recommendations are needed for products intended for oncological patients.


Assuntos
Cosméticos , Disruptores Endócrinos , Humanos , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Cosméticos/efeitos adversos , Cosméticos/química , Hidroxitolueno Butilado
4.
J Cosmet Dermatol ; 23(5): 1884-1890, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444348

RESUMO

BACKGROUND: There is a growing trend of individuals wearing cosmetics while participating in physical activities. Nonetheless, there remains a need for further understanding regarding the effects of makeup on the facial epidermis during exercise, given the existing knowledge gaps. PURPOSE: This study aimed to evaluate the effects of a cosmetic foundation cream on skin conditions during physical activity. METHODS: Forty-three healthy college students, 20 males (26.3 ± 1.5 years) and 23 females (23.1 ± 1.0 years), were enrolled in this study. Foundation cream was applied to participants on half of the face in two different areas (MT: makeup T zone and MU: makeup U zone). The other half of the face served as internal control (T: non-makeup T zone and U: non-makeup U zones). Skin levels of moisture, elasticity, pore, sebum, and oil were measured using a skin analysis device (Aramhuvis, Gyeonggi, Republic of Korea) before and after a 20-min treadmill exercise. Paired t-test and independent t-test were performed for skin condition measurements at pre- and postexercise. RESULTS: The skin moisture levels in both the T and MT significantly increased after exercise (p < 0.05) (pre-T: 24.5 ± 1.3, post-T: 38.5 ± 3.5 and pre-MT: 18.7 ± 0.7, post-MT: 40.4 ± 4.8). Elasticity also significantly improved in both the T and MT (p < 0.05) (pre-T: 25.6 ± 1.3, post-T: 41.5 ± 3.5 and pre-MT: 20.0 ± 0.9, post-MT: 41.7 ± 3.7). The size of the pores in the T zone observed a significant increase after exercise (p < 0.05) (pre-T: 41.7 ± 2.1, post-T: 47.8 ± 2.4). The sebum levels in the T zone exhibited a reduction following physical activity, whereas there was a notable increase in sebum levels in the makeup zones (p < 0.05) (pre-MT: 2.4 ± 0.7, post-MT:4.2 ± 0.8 and pre MU 1.8 ± 0.34, post MU 4.9 ± 0.9). The oil level was increased in the non-makeup zones (pre-T: 6.1 ± 1.4, post-T: 11.8 ± 2.0 and pre-U: 7.3 ± 1.5, post-U: 11.9 ± 1.9; p < 0.05) and decreased in the makeup zones (pre-MT: 13.3 ± 1.9, post-MT: 7.4 ± 2.3 and pre-MU: 22.1 ± 2.4, post-MU: 3.2 ± 1.0; p < 0.05). CONCLUSIONS: The findings suggest that using foundation cream during aerobic exercise can reduce skin oil, causing dryness. Additionally, makeup can clog pores and increase sebum production. Therefore, wearing makeup may not be recommended for people with dry skin conditions based on the results of the current study. This research offers important insights to the public, encouraging them to consider the possible consequences of using makeup while exercising.


Assuntos
Exercício Físico , Creme para a Pele , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Exercício Físico/fisiologia , Creme para a Pele/administração & dosagem , Creme para a Pele/química , Sebo/metabolismo , Elasticidade/efeitos dos fármacos , Face , Cosméticos/administração & dosagem , Cosméticos/química , Teste de Esforço , Voluntários Saudáveis , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/química , Epiderme/química , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Epiderme/metabolismo
5.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450923

RESUMO

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Assuntos
Proliferação de Células , Colagenases , Hialuronoglucosaminidase , Melaninas , Paeonia , Elastase Pancreática , Óleos de Plantas , Sementes , Paeonia/química , Sementes/química , Animais , Camundongos , Melaninas/análise , Elastase Pancreática/metabolismo , Óleos de Plantas/farmacologia , Proliferação de Células/efeitos dos fármacos , Colagenases/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/análise , Cosméticos/química , Cosméticos/farmacologia , Melanoma Experimental/tratamento farmacológico , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/análise , Membrana Corioalantoide/efeitos dos fármacos , Linhagem Celular Tumoral , Galinhas
6.
Molecules ; 29(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542972

RESUMO

Cosmetic products are chemical substances or mixtures used on the skin, hair, nails, teeth, and the mucous membranes of the oral cavity, whose use is intended to clean, protect, correct body odor, perfume, keep in good condition, or change appearance. The analysis of cosmetic ingredients is often challenging because of their huge complexity and their adulteration. Among various analytical tools, mass spectrometry (MS) has been largely used for compound detection, ingredient screening, quality control, detection of product authenticity, and health risk evaluation. This work is focused on the MS applications in detecting and quantification of some common cosmetic ingredients, i.e., preservatives, dyes, heavy metals, allergens, and bioconjugates in various matrices (leave-on or rinse-off cosmetic products). As a global view, MS-based analysis of bioconjugates is a narrow field, and LC- and GC/GC×GC-MS are widely used for the investigation of preservatives, dyes, and fragrances, while inductively coupled plasma (ICP)-MS is ideal for comprehensive analysis of heavy metals. Ambient ionization approaches and advanced separation methods (i.e., convergence chromatography (UPC2)) coupled to MS have been proven to be an excellent choice for the analysis of scented allergens. At the same time, the current paper explores the challenges of MS-based analysis for cosmetic safety studies.


Assuntos
Cosméticos , Metais Pesados , Perfumes , Cosméticos/química , Perfumes/análise , Alérgenos/análise , Conservantes Farmacêuticos , Espectrometria de Massas , Corantes
7.
J Cosmet Dermatol ; 23(4): 1113-1121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429932

RESUMO

BACKGROUND: Snail mucin is becoming increasingly popular for its wide range of ingredients and potential benefits. Snail extract's widespread appearance in cosmetic formulations encourages an investigation into the medical and cosmetic benefits. AIMS: This study aims to explore current literature on the variety of snail mucin applications. Specifically, we present a review of the uses, global market estimates and projects, and limitations to snail mucin. METHODS: A literature search was conducted on PubMed reviewing snail mucin and their application in medical and dermatologic fields examining their uses. Economic reports were also investigated for Global Market estimates. RESULTS: The therapeutic use of snail mucin in medical fields has been studied as antimicrobial agents, drug delivery vehicles, antitumor agents, wound healing agents, and biomaterial coatings among others. Additionally, the use in cosmetic fields includes antiaging, hydrating, anti-acne, scarring, and hyperpigmentation treatments. It is important to highlight that most studies conducted were preclinical or small clinical studies, stressing the need for additional large-scale clinical trials to support these claims. Investigations into the global market found estimates ranging from $457 million to $1.2 billion with upward projections in the upcoming decade. Limitations include ethical habitats for collection, allergy investigation, and missing clinical studies. CONCLUSIONS: The findings presented here emphasize the expanding uses of snail mucin and its ingredients alongside a growing market cosmetic industry should consider. We also emphasize the need for appropriate clinical trials into the stated benefits of snail mucin to ensure consumer safety and ethical extraction of mucin.


Assuntos
Cosméticos , Mucinas , Pele , Humanos , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Cicatriz/tratamento farmacológico , Cosméticos/química , Mucinas/uso terapêutico , Pele/efeitos dos fármacos , Caramujos/química
8.
Chem Res Toxicol ; 37(3): 513-524, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38380652

RESUMO

The research on acute dermal toxicity has consistently been a crucial component in assessing the potential risks of human exposure to active ingredients in pesticides and related plant protection products. However, it is difficult to directly identify the acute dermal toxicity of potential compounds through animal experiments alone. In our study, we separately integrated 1735 experimental data based on rabbits and 1679 experimental data based on rats to construct acute dermal toxicity prediction models using machine learning and deep learning algorithms. The best models for the two animal species achieved AUC values of 78.0 and 82.0%, respectively, on 10-fold cross-validation. Additionally, we employed SARpy to extract structural alerts, and in conjunction with Shapley additive explanation and attentive FP heatmap, we identified important features and structural fragments associated with acute dermal toxicity. This approach offers valuable insights for the detection of positive compounds. Moreover, a standalone software tool was developed to make acute dermal toxicity prediction easier. In summary, our research would provide an effective tool for acute dermal toxicity evaluation of pesticides, cosmetics, and drug safety assessment.


Assuntos
Cosméticos , Praguicidas , Humanos , Ratos , Coelhos , Animais , Testes de Toxicidade , Cosméticos/química
9.
Curr Pharm Des ; 30(2): 115-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204262

RESUMO

Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.


Assuntos
Cosméticos , Nanopartículas , Humanos , Absorção Cutânea , Nanopartículas/química , Pele/metabolismo , Cosméticos/química , Preparações Farmacêuticas/metabolismo
10.
J Cosmet Dermatol ; 23(2): 510-524, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37658653

RESUMO

BACKGROUND: The development of effective cosmetic products for the reduction of the signs of skin aging is a complex process which requires an optimized combination of ingredients and specialized systems to deliver the actives to the skin layers. AIM: To evaluate the tolerance and antiaging clinical efficacy of a cosmetic formulation containing a blend of nanoencapsulated antioxidants: ascorbyl palmitate, resveratrol, tocopherol, caffeine, carnosine, and niacinamide. METHODS: Clinical efficacy was determined by subjective and instrumental analyses of collagen synthesis by fluorescence spectroscopy, by three-dimensional imaging analysis of suborbital edema, and by analysis of skin hydration and sebum content by biophysical techniques-Corneometer® and Sebumeter®. RESULTS: The studied formulation was safe and effective for the improvement of skin appearance by increasing collagen synthesis and skin moisturizing and by reducing facial blemishes, swelling, and oiliness. A preclinical exploratory approach using an experimental model of human cell and skin cultures agreed with the observed antiaging effects, identifying mechanisms related to the containment of oxidative stress, reduction of melanin production, increased synthesis of type I procollagen, and regulation of the epidermal cohesion protein filaggrin. CONCLUSIONS: The skin benefits obtained resulted from the combination of the ingredients in the formulation and the nanoencapsulation-based delivery system, which favors the solubility, safety, efficacy, and bioavailability of the preparation to the skin.


Assuntos
Cosméticos , Envelhecimento da Pele , Humanos , Antioxidantes/química , Pele , Higiene da Pele , Cosméticos/farmacologia , Cosméticos/química , Colágeno/metabolismo
11.
Dermatitis ; 35(2): 121-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38109205

RESUMO

Environmental dermatology is the study of how environmental factors affect the integumentary system. The environment includes natural and built habitats, encompassing ambient exposure, occupational exposures, and lifestyle exposures secondary to dietary and personal care choices. This review explores common toxins found in personal care products and packaging, such as bisphenols, parabens, phthalates, per- and poly-fluoroalkyl substances, p-phenylenediamine, and formaldehyde. Exposure to these toxins has been associated with carcinogenic, obesogenic, or proinflammatory effects that can potentiate disease. In addition, these compounds have been implicated as endocrine-disrupting chemicals that can worsen dermatological conditions such as acne vulgaris, or dermatitis. Certain pollutants found in personal care products are not biodegradable and have the potential to bioaccumulate in humans. Therefore, even short-term exposure can cause long-lasting issues for communities. The skin is often the first point of contact for environmental exposures and serves as the conduit between environmental toxins and the human body. Therefore, it is important for dermatologists to understand common pollutants and their acute, subacute, and chronic impact on dermatological conditions to better diagnose and manage disease.


Assuntos
Cosméticos , Poluentes Ambientais , Exposição Ocupacional , Humanos , Cosméticos/efeitos adversos , Cosméticos/química , Exposição Ambiental/efeitos adversos , Exposição Ocupacional/efeitos adversos , Parabenos/análise
12.
Environ Sci Pollut Res Int ; 30(60): 125931-125946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010544

RESUMO

Organic UV filters are important ingredients in many personal care products, including sunscreens. Evaluating the biodegradability of organic UV filters is key to estimate their recalcitrance and environmental fate and thus central to their overall environmental risk assessment. In order to further understand the degradation process, the aim was to investigate whether specific consortia could degrade certain UV filters. Several bacterial strains were isolated from enrichment cultures actively degrading octocrylene (OC), butyl methoxydibenzoylmethane (BM), homosalate (HS), and 2-ethylhexyl salicylate (ES) and were utilized to construct an in-house consortium. This synthetic consortium contained 27 bacterial strains and degraded OC, BM, HS, and ES 60-80% after 12 days, but not benzophenone-3 (BP3), methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (EHT), or diethylamino hydroxybenzoyl hexyl benzoate (DHHB). Furthermore, several commercial microbial mixtures from Greencell were tested to assess their degradation activity toward the same organic UV filters. ES and HS were degraded by some of the commercial consortia, but to a lesser extent. The rest of the tested UV filters were not degraded by any of the commercial bacterial mixes. These results confirm that some organic UV filters are recalcitrant to biodegradation, while others are degraded by a specific set of microorganisms.


Assuntos
Cosméticos , Consórcios Microbianos , Raios Ultravioleta , Protetores Solares/química , Cosméticos/química
13.
Regul Toxicol Pharmacol ; 145: 105519, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866701

RESUMO

Formaldehyde has been classified as carcinogenic to humans by International Agency for Research on Cancer and found in personal care (PC) products containing formaldehyde-donor (FD) preservatives. However, the cancer risk associated with the use of FD-containing PC products has not been well established. Our study provides the quantitative cancer risk assessment of formaldehyde in FD-containing PC products. The carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy was used in this risk assessment to provide reliable exposure information to formaldehyde in PC products and aqueous solutions containing sodium hydroxymethylglycinate. The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses (BMDs) for 10% effect. For hemolymphoreticular neoplasias in male rats, a BMD of 28.03 mg/kg/day and a BMD lower confidence limit (BMDL) of 2.52 mg/kg/day were calculated from available long-term animal experiments. The worst-case consumer exposure to formaldehyde from FD-containing PC products was 0.007 µg/kg/day. Comparing the consumer exposure with BMDL, the resulting MOE was 360,000 for the worst-case scenario. The consumer exposure to formaldehyde (0.007 µg/kg/day) from using FD-containing PC products represents less than 1.0 × 10-6 % of background level endogenous formaldehyde (878-1310 mg/kg/day). The cancer risk from formaldehyde to consumers using FD-containing PC products is negligible.


Assuntos
Cosméticos , Neoplasias , Humanos , Masculino , Ratos , Animais , Cosméticos/toxicidade , Cosméticos/química , Formaldeído/toxicidade , Conservantes Farmacêuticos , Carcinógenos , Medição de Risco
14.
J Chromatogr A ; 1710: 464379, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37778099

RESUMO

Based on one-step vortex extraction and purification combined with gas chromatography-tandem mass spectrometry (GC-MS/MS), we established a simple, rapid, and efficient method for the simultaneous determination of four skin penetration enhancers in cosmetics, including isosorbide dimethyl ether, isopropyl myristate, N-butylsaccharin and Azone. The extraction procedure was performed in a centrifuge tube, allowing extraction and purification in a single step. The cosmetic sample was extracted by n-hexane-ethyl acetate (1:1, V/V), purified by silica gel and anhydrous magnesium sulfate as the solid phase purification agent, separated on a TG-5 ms column (30.0 m × 0.25 mm × 0.25 µ m), confirmed and detected by GC-MS/MS in the selected reaction monitoring (SRM) mode, and quantified by the internal standard method with Di-n­butyl phthalate-D4(DBP-D4) as the internal standard. The selections of a column, extraction solvent, and solid phase purification agent were optimized. Under the optimized conditions, the four skin penetration enhancers showed good linearities in the range of 0.02∼0.50 mg L - 1. The correlation coefficients (r) were 0.992 ∼ 0.997, exceeding the specifications requirements (r ≥ 0.990); The detection (LODs, S/N = 3) and quantification limits (LOQs, S/N = 10) of the method were 0.08 ∼ 0.12 mg kg-1 and 0.25 ∼ 0.40 mg kg-1, respectively. According to the cosmetic matrix in different formulation systems, the spiked recovery tests were carried out at three levels, i.e., low, medium, and high. The average recoveries of the analytes were 85.3% ∼ 95.6%, and the relative standard deviations (RSDs, n = 6) were 2.1% ∼ 7.8%. The established method was also employed to analyze cosmetics in the market. Azone, isosorbide dimethyl ether, and isopropyl myristate resulted as the most widely used skin penetration enhancers in cosmetics. The method established in this study has the advantages of operational simplicity, high sensitivity, good reproducibility, and low consumption of samples and solvents. Moreover, it can be used to determine skin penetration enhancers in cosmetics.


Assuntos
Cosméticos , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes , Cosméticos/química , Isossorbida/análise , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão
15.
Eur J Pharm Biopharm ; 192: 25-40, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739239

RESUMO

The use of nanotechnology strategies is a current hot topic, and research in this field has been growing significantly in the cosmetics industry. Inorganic nanoparticles stand out in this context for their distinctive physicochemical properties, leading in particular to an increased refractive index and absorption capacity giving them a broad potential for cutaneous applications and making them of special interest in research for dermopharmaceutical and cosmetic purposes. This performance is responsible for its heavy inclusion in the manufacture of skin health products such as sunscreens, lotions, beauty creams, skin ointments, makeup, and others. In particular, their suitable bandgap energy characteristics allow them to be used as photocatalytic semiconductors. They provide excellent UV absorption, commonly known as UV filters, and are responsible for their wide worldwide use in sunscreen formulations without the undesirable white residue after consumer application. In addition, cosmetics based on inorganic nanoparticles have several additional characteristics relevant to formulation development, such as being less expensive compared to other nanomaterials, having greater stability, and ensuring less irritation, itching, and propensity for skin allergies. This review will address in detail the main inorganic nanoparticles used in dermopharmaceutical and cosmetic products, such as titanium dioxide, zinc oxide, silicon dioxide, silver, gold, copper, and aluminum nanoparticles, nanocrystals, and quantum dots, reporting their physicochemical characteristics, but also their additional intrinsic properties that contribute to their use in this type of formulations. Safety issues regarding inorganic nanoparticles, based on toxicity studies, both to humans and the environment, as well as regulatory affairs associated with their use in dermopharmaceuticals and cosmetics, will be addressed.


Assuntos
Cosméticos , Nanopartículas , Humanos , Cosméticos/toxicidade , Cosméticos/química , Protetores Solares/toxicidade , Pele/metabolismo , Nanopartículas/química , Absorção Cutânea
16.
Curr Pharm Des ; 29(21): 1632-1644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534479

RESUMO

The increasing knowledge on skin physiology, formulation science and nanotechnology has led to continuous improvements in cosmetics, and introduction of dermocosmetics has been increasing particularly for the management of skin disorders such as acne, eczema, psoriasis, etc. Nowadays, research has been focused on the development of products which can efficiently administer active compounds to the target skin layers while minimizing side effects. The use of multifunctional lipid nanoparticles for cosmetic and dermocosmetic purposes is promising not only because biocompatible ingredients are used in their composition, but also because of their ability to show enhanced skin penetration. Although the introduction of liposomes has been a hallmark of lipid nanoparticles, development of novel systems capable of encapsulating active compounds with tunable release profiles, that show good stability, are easy to manufacture and handle remains a necessity. Solid lipid nanoparticles (SLN) were introduced as alternative formulations for emulsions, liposomes and polymeric nanoparticles, whereas nanostructured lipid carriers (NLC) were developed later as second-generation nanoparticles. However, both SLN and NLC show many inherited advantageous properties to be used for dermal applications including ability to provide occlusion and photoprotective effect and skin hydration, and various SLN and NLC based products are already in the market. This review provides an overview on the current state-of-art of SLN and NLC particularly for cosmetic and dermocosmetic purposes, discuss their formulation composition, structures and preparation techniques. Their use for the topical delivery of active compounds in different skin disorders is highlighted along with examples of commercialized products.


Assuntos
Cosméticos , Nanopartículas , Dermatopatias , Humanos , Lipossomos/uso terapêutico , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Pele , Dermatopatias/tratamento farmacológico , Cosméticos/química , Tamanho da Partícula
17.
Biotechnol Adv ; 67: 108210, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460047

RESUMO

Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.


Assuntos
Cosméticos , Lipopeptídeos , Humanos , Lipopeptídeos/química , Bactérias , Engenharia Genética , Cosméticos/química , Preparações Farmacêuticas , Tensoativos/química
18.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513428

RESUMO

With the advancement of living standards in modern society and the emergence of an aging population, an increasing number of people are becoming interested in the topic of aging and anti-aging. An important feature of aging is skin aging, and women are particularly concerned about skin aging. In the field of cosmetics, the market share of anti-aging products is increasing year by year. This article reviews the research and development progress of skin aging and related active compounds both domestically and internationally in recent years. The results show that, in terms of the research on skin aging, the popular theories mainly include free radicals and oxidative stress theory, inflammation theory, photoaging theory, and nonenzymatic glycosyl chemistry theory. In terms of research on the active ingredients with anti-aging activities in the skin, there are numerous reports on related products in clinical studies on human subjects, animal experiments, and experimental studies on cell cultures, with a variety of types. Most of the compounds against skin aging are sourced from natural products and their action mechanisms are mainly related to scavenging oxygen free radicals and enhancing antioxidant defenses. This review provides important references for the future research of skin aging and the development of related products. Although there is a great progress in skin aging including related active ingredients, ideal compounds or products are still lacking and need to be further validated. New mechanisms of skin aging, new active ingredients sourced from natural and artificial products, and new pharmaceutical forms including further clinical validations should be further investigated in the future.


Assuntos
Cosméticos , Envelhecimento da Pele , Animais , Humanos , Feminino , Idoso , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Pele/metabolismo , Cosméticos/química
19.
J Chromatogr A ; 1705: 464175, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406420

RESUMO

Mass spectrometry (MS) is a crucial tool in cosmetic analysis. It is widely used for ingredient screening, quality control, risk monitoring, authenticity verification, and efficacy evaluation. However, due to the diversity of cosmetic products and the rapid development of MS-based analytical methods, the relevant literature needs a more systematic collation of information on this subject to unravel the true potential of MS in cosmetic analysis. Herein, an overview of the role of MS in cosmetic analysis over the past two decades is presented. The currently used sample preparation methods, ionization techniques, and types of mass analyzers are demonstrated in detail. In addition, a brief perspective on the future development of MS for cosmetic analysis is provided.


Assuntos
Cosméticos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cosméticos/química
20.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375348

RESUMO

Achillea millefolium L. is one of the most known medicinal plants with a broad spectrum of applications in the treatment of inflammation, pain, microbial infections and gastrointestinal disorders. In recent years, the extracts from A. millefolium have also been applied in cosmetics with cleansing, moisturizing, shooting, conditioning and skin-lightening properties. The growing demand for naturally derived active substances, worsening environmental pollution and excessive use of natural resources are causing increased interest in the development of alternative methods for the production of plant-based ingredients. In vitro plant cultures are an eco-friendly tool for continuous production of desired plant metabolites, with increasing applicability in cosmetics and dietary supplements. The purpose of the study was to compare phytochemical composition and antioxidant and tyrosinase inhibitory properties of aqueous and hydroethanolic extracts from A. millefolium obtained from field conditions (AmL and AmH extracts) and in vitro cultures (AmIV extracts). In vitro microshoot cultures of A. millefolium were obtained directly from seeds and harvested following 3 weeks of culture. Extracts prepared in water, 50% ethanol and 96% ethanol were compared for the total polyphenolic content, phytochemical content using the ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-hr-qTOF/MS), antioxidant activity by DPPH scavenging assay and the influence on the activity of mushroom and murine tyrosinases. The phytochemical content of AmIV extracts was significantly different from AmL and AmH extracts. Most of the polyphenolic compounds identified in AmL and AmH extracts were present in AmIV extracts only in trace amounts and the major constituents presented in AmIV extracts were fatty acids. The total content of polyphenols in AmIV exceeded 0.25 mg GAE/g of dried extract, whereas AmL and AmH extracts contained from 0.46 ± 0.01 to 2.63 ± 0.11 mg GAE/g of dried extract, depending on the solvent used. The low content of polyphenols was most likely responsible for the low antioxidant activity of AmIV extracts (IC50 values in DPPH scavenging assay >400 µg/mL) and the lack of tyrosinase inhibitory properties. AmIV extracts increased the activity of mushroom tyrosinase and tyrosinase present in B16F10 murine melanoma cells, whereas AmL and AmH extracts showed significant inhibitory potential. The presented data indicated that microshoot cultures of A. millefolium require further experimental research before they can be implemented as a valuable raw material for the cosmetics industry.


Assuntos
Achillea , Cosméticos , Leucemia Mieloide Aguda , Animais , Camundongos , Achillea/química , Antioxidantes/química , Monofenol Mono-Oxigenase , Polifenóis/química , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Folhas de Planta/química , Cosméticos/química , Etanol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...